Examining the Impact of Keyword Ambiguity on Search Advertising Performance: A Topic Model Approach

نویسندگان

  • Jing Gong
  • Beibei Li
چکیده

In this paper, we explore how keyword ambiguity can affect search advertising performance. Consumers arrive at search engines with diverse interests, which are often unobserved and nontrivial to predict. The search interests of different consumers may vary even when they are searching using the same keyword. In our study, we propose an automatic way of examining keyword ambiguity based on probabilistic topic models from machine learning and computational linguistics. We examine the effect of keyword ambiguity on keyword performance using a hierarchical Bayesian approach that allows for topic-specific effects and nonlinear position effects, and jointly models click-through rate (CTR) and ad position (rank). We validate our study using a novel data set from a major search engine that contains information on consumer click activities for 2,625 distinct keywords across multiple product categories from 10,000 impressions. We find that consumer click behavior varies significantly across keywords, and such variation can be partially explained by keyword ambiguity. Specifically, higher keyword ambiguity is associated with higher CTR on top-positioned ads, but also a faster decay in CTR with screen position. Therefore, the overall effect of keyword ambiguity on CTR varies across positions. Our study provides implications for advertisers to improve the prediction of keyword performance by taking into account keyword ambiguity and other semantic characteristics of keywords. It can also help search engines design keyword planning tools to aid advertisers when choosing potential keywords.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Examining the Impact of Contextual Ambiguity on Search Advertising Keyword Performance: A Topic Model Approach

Sponsored search advertising offers a more targeted way of marketing than traditional advertising. However, the context of consumer search is often unobserved and the prediction of it can be nontrivial. Consumer search contexts may vary even when consumers are searching for the same keyword. Due to the ambiguity of a keyword, a large portion of the ads displayed may fall outside a particular co...

متن کامل

Perils of Uncertainty? The Impact of Contextual Ambiguity on Search Advertising Keyword Performance

In this paper, we explore how the contextual ambiguity of a search can affect a keyword's performance. We propose an automatic way of categorizing keywords and examining keyword contextual ambiguity based on topic models from machine learning and computational linguistics. We quantify the effect of contextual ambiguity on keyword click-through performance using a hierarchical Bayesian model, an...

متن کامل

Advertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles

When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...

متن کامل

The effect of ad rank on the performance of keyword advertising campaigns

The goal of this research is to evaluate the effect of ad rank on the performance of keyword advertising campaigns. We examined a large-scale data file comprised of nearly 7,000,000 records spanning 33 consecutive months of a major US retailer’s search engine marketing campaign. The theoretical foundation is serial position effect to explain searcher behavior when interacting with ranked ad lis...

متن کامل

An Effective Path-aware Approach for Keyword Search over Data Graphs

Abstract—Keyword Search is known as a user-friendly alternative for structured languages to retrieve information from graph-structured data. Efficient retrieving of relevant answers to a keyword query and effective ranking of these answers according to their relevance are two main challenges in the keyword search over graph-structured data. In this paper, a novel scoring function is proposed, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017